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A new concept of approximation for rigid point sets is suggested. As a necessary

condition of optimality, the principle of the conjoint centroid is proved: to

achieve a best approximation, certain co-sets must conjoin their centroids. The

practical use of the centroid principle, and how it opens up a non-classical

method of modelling various aspects of orientational disorder in crystals, is

demonstrated. The principle is applied to the interpretation of density data, to

the prediction of high-pressure conformations through qualitative simulations,

and to the prediction and computation of disordered sets of possible

reorientation pathways which explain the shape of the electron-density

distribution reconstructed from diffraction experiments. It is also demonstrated

how an inversion of the centroid principle can be used to model forces between

the parts of the disordered structures.

1. Motivation

Diffraction experiments are an important and widely accepted

means for the investigation of matter. However, they exhibit

an inherent severe limitation: they can only provide the space-

and-time average of the crystal structure, and it may be dif®-

cult to resolve the disorder of structural fragments like

complex anions or molecules inside the crystal. To explain the

static or dynamic ambiguity, the fragment may be embedded

into density data such as electron density, scattering-length

distribution etc. which are reconstructed from the scattering

data (Knorr et al., 1998). In general, the embedding is a non-

differentiable complex problem. We will show that the

necessity for a conjoint geometric centroid for the disordered

object and for the non-disordered part of the crystal opens up

a non-classical way of embedding the structural fragment into

density data in full orientational disorder by means of

gradient-free methods (Knorr & MaÈdler, 1999). In this sense,

the principle of the conjoint centroid is an important step

towards an implicit computer-based model of disorder in

crystals, which represents static or dynamic ambiguity in the

form of solutions to suitable optimization problems. Up to a

certain degree, such a qualitative model ± which uses

geometric instead of physical concepts ± can compensate for

the lack of explicit quantitative formulae.

In x2, the basic version of the principle is proved and

the question of suf®ciency is discussed. A more elaborated

version, which better meets the demands of practical appli-

cations, is stated in x3, together with some more general

aspects of its applicability. In x4, computational aspects are

discussed. Finally, in x5, we brie¯y report on several crystal-

lographic problems and show how the centroid principle

facilitates their solution.

2. The principle of the conjoint centroid

There is a well known minimum property of the triangle's

centroid:1 it is the unique point that minimizes the sum of its

squared distances from the vertices. It seems to be less known

that every ®nite subset of the Euclidean space <n has this

minimum property. To give an example, for every point of the

plane background in Fig. 1, its colour indicates the squared

and summed distances of this point from the red points of the

set M. It follows from the lemma (see x2.1) that the blue

centroid C ofM must be the bright centre in the background.

We may look at the centroid's minimum property from a

different point of view: for a triangle F and a ®xed point Y

somewhere in space, we can look for best approximations to Y

by the triangle. Of course, any position F = �X1;X2;X3�, the

centroid F :� �X1 � X2 � X3�=3 of which satis®es

F � Y � Y , is an answer to this problem. It seems to be

widely unknown that this necessity for identical centroids can

be generalized to partitions of ®nite point sets. If the parts are

`rigid fragments' in the sense that their mobility is restricted to

isometric mappings, loosely verbalized our central theorem

states (theorem 1, x2.3): rigid point sets which mesh one

another in a best approximation must have a conjoint

centroid.

Let X � �xj�nj�1 be points in the Euclidean space <n, with

the inner product (e.g. Valenza, 1993)

1 Centroid, median point, centre of mass, centre of gravity, centre of
attraction, expectation, ®rst-order momentum and spatial mean: all these
notions in one way or the other deal with the same point F which, in the
case of the triangle, F = �X1, X2, X3), is the spatial average of the vertices,
i.e. F = �X1 � X2 � X3�=3 (e.g. Weisstein, 1999). Here we use `centroid' since
we would like to strip the notion of the additional meanings it carries in
physics or statistics, thus emphasizing its purely geometric aspects.



hX;Yi :�Pn
j�1

xjyj

and the norm

kXk :� hX;Xi1=2:

For translations A of <n, orthogonal n� n transformations

U and a collection of points X1; : : : ;XN 2 <n, we consider

isometric images X 0i of the points Xi , i.e.

X 0i :� UXi � A; i � 1; : : : ;N:

For a ®xed collection of points Y1; : : : ;YN 2 <n, their

approximation by these images is measured by means of a

weighted residual,

R�A;U� :�PN
i�1

pikYi ÿ �UXi � A�k2;

with weights

pi > 0;
PN
i�1

pi � 1:

Note that the points X1; : : : ;XN;Y1; : : : ;YN are not

requested to be pairwise different. In the ®rst part of this

section, we prove the centroid principle to be a necessary

condition for an optimal isometric mapping �A?;U?�; in

particular, we determine the optimal translation A � A?

which minimizes the residual

R�A� �PN
i�1

pikYi ÿ �Wi � A�k2

for a ®xed set of arbitrary points Wi 2 <n (including the case

Wi :� U?Xi) and reveal the relation between A? and the

weighted centroids of the points involved (theorem 1, x2.3). In

the second part, a necessary and suf®cient condition for

optimal transformations U? is derived (theorem 2, x2.5), and

from that a suf®cient condition for minimizing transforma-

tions U? for dimension n � 2, i.e. for rotations �det�U� � 1� or

roto-inversions �det�U� � ÿ1� (theorem 3, x2.6). For n � 3, we

suggest the use of Monte Carlo methods and evolution

strategies for the computation of the images U?X1; : : : ;U?XN

which minimize the residual R�U�.

2.1. Lemma

Let the points Z1; : : : ;ZN 2 <n have their weighted

centroid at the origin,PN
i�1

piZi � O; pi > 0;
PN
i�1

pi � 1:

Then, for every translation A 2 <n, the equationPN
i�1

pikZi ÿ Ak2 �PN
i�1

pikZik2 � kAk2 �1�

holds. Furthermore, the unique minimum of the function

F�A� �PN
i�1

pikZi ÿ Ak2

is the origin A � O.

2.2. Proof

To prove equation (1), we use the special form of the

Euclidean norm which is induced by an inner product,P
pikZi ÿ Ak2 �P pihZi ÿ A;Zi ÿ Ai

�P pikZik2 �P pikAk2 ÿ 2
P

pihZi;Ai
�P pikZik2 � kAk2 ÿ 2

P
piZi;A


 �
�P pikZik2 � kAk2:

Now, F�A� is represented by the right-hand side of equation

(1) which is minimal if and only if A � O.

To give an interpretation of the lemma, we show that it

contains a proof of the centroid's minimum property which we

started from at the beginning of this section and which is

illustrated in Fig. 1 (for a setM of N different points Zi and

equal weights pi � 1=N): if we assume (without loss of

generality) that the centroid C � �PZi�=N of M coincides

with the origin O, then, according to the lemma, the centroid

uniquely minimizes the function F�A�, and hence the function

NF�A� �PN
i�1

kZi ÿ Ak2;

i.e. the centroid uniquely minimizes the squared and summed

distances as mentioned above.

The following theorem generalizes the issue.

2.3. Theorem 1 ± principle of the conjoint centroid

Let Y1; : : : ;YN 2 <n denote a ®xed collection of points and

W1; : : : ;WN denote a second collection which is mapped by

translations A 2 <n, with the weighted residual

R�A� �PN
i�1

pikYi ÿ �Wi � A�k2:

If A � A? is selected such that the residual is minimal,
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Figure 1
Visualizing the centroid's minimum property for a set M of random
points Zi: the blue centroid C ofM is the unique minimum of the function
F�A� :� �1=N�PN

i�1 kZi ÿ Ak2, A 2 <3:
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R�A?� � min
A2<n

R�A�

then the weighted centroids are identical,

PN
i�1

piYi �
PN
i�1

pi�Wi � A?�

and A? �P pi�Yi ÿWi� is the unique minimum of the resi-

dual R�A�.

2.4. Proof

Let

A0 :�PN
i�1

pi�Yi ÿWi�:

Since this identity can be rewritten in the formP
piYi �

P
pi�Wi � A0�, the proof is complete once we have

shown that A0 uniquely minimizes the residual R.

In order to apply the above lemma to the points

Zi :� Yi ÿ �Wi � A0�; i � 1; : : : ;N;

we have to show that their weighted centroid coincides with

the origin O 2 <n,P
piZi �

P
pi�Yi ÿWi ÿ A0�

�P pi�Yi ÿWi� ÿ A0

P
pi

� A0 ÿ A0 � O:
For a minimizing translation A? select A1 such that

A? � A0 � A1. Then, for the minimum value of the residual

we have

R�A?� �P pikYi ÿ �Wi � A?�k
�P pik�Yi ÿ �Wi � A0�� ÿ A1k:

From the lemma we conclude A1 � O; hence, A? � A0 is the

unique minimum of R. This completes the proof.

Since the theorem includes the case Wi :� U?Xi , it provides

a sound and effective way to facilitate the best approximation

of points Y1; : : : ;YN by isometric images X 01; : : : ;X 0N of points

X1; : : : ;XN : settle the translation part ®rst [which means a

shift T �P pi�Yi ÿ Xi� to the weighted centroid of the

differences], then look for optimal transformations U?. For the

sequel, without loss of generality, we assume that the point

collections X1; : : : ;XN and Y1; : : : ;YN have their conjoint

centroid at the origin O of the space <n.

In order to derive a condition for optimal transformations2

U?, consider the residual

R�U� �PN
i�1

pikYi ÿ UXik2: �2�

For every orthogonal (hence length-preserving) transforma-

tion U, the residual can be rewritten

R�U� �P pihYi ÿ UXi;Yi ÿ UXii
�P pi�kYik2 � kXik2� ÿ 2

P
pihYi;UXii:

Obviously R�U� is minimal if and only if the subtracted term

on the right is maximal, i.e. if the images UXi are `as parallel as

possible' to the vectors Yi which they approximate. This

provides a necessary and suf®cient condition for optimal

transformations U?.

2.5. Theorem 2 ± characterization of optimal U?

An orthogonal transformation U? minimizes the residual

R�U� �PN
i�1

pikYi ÿ UXik2 �3�

if and only if it maximizes the function

G�U� :�PN
i�1

pihYi;UXii: �4�

In the case of two dimensions, for every orthogonal matrix

U there exists an angle ' and a pair of opposite signs

s1; s2 2 f1;ÿ1g such that G � G�U�'; s1; s2�� has the repre-

sentation PN
i�1

pi

�
y
�i�
1

y
�i�
2

� �
;

cos ' s1 sin '
sin ' s2 cos '

� �
x
�i�
1

x
�i�
2

� ��
:

Evaluation of the inner products shows that G can be

expressed as a function of ',

g�'� :� c1 sin '� c2 cos '; �5�
with coef®cients c1 � c1�s1� and c2 � c2�s2�;

c1 �
PN
i�1

pi�x�i�1 y
�i�
2 � s1x

�i�
2 y
�i�
1 �

c2 �
PN
i�1

pi�x�i�1 y
�i�
1 � s2x

�i�
2 y
�i�
2 �:

�6�

Differentiation of g with respect to ' yields

g0�'� � c1 cos 'ÿ c2 sin ':

In the cases c2 6� 0, the optimal angles '? are among the

solutions to the equation

tan ' � c1=c2:

Then, for suitable integers k0 and k0 � 1, two different solu-

tions '1;2 for

' � arctan�c1=c2� � k�; k 2 Z;
belong to the interval �0; 2��. Since, in this case, the second

derivative of g isÿg, the solution '? with g�'?�> 0 is the angle

which maximizes g; its orthogonal matrix U? � U�'?; s1; s2�
maximizes the function G and minimizes the residual R. Note

that both sign pairs �s� j �1 ; s
� j �
2 � have to be tested in order to

decide whether rotation or roto-inversion (or both) leads to

the global optimum U?.

This result is summarized in the following theorem.

2 Because of compactness, an optimal U? always exists: the set of orthogonal
transformations is bounded and closed in a ®nite-dimensional space, and the
residual (2) is continuous.



2.6. Theorem 3 ± sufficiency of U? for dimension n = 2

Let the point collections Y1; : : : ;YN and X1; : : : ;XN have

their conjoint centroid at the origin O 2 <2. For rotation

(s1 � ÿ1 and s2 � 1) or roto-inversion (s1 � 1 and s2 � ÿ1)

let the coef®cients c
�1�
2 ; c

�2�
2 hold,

c
� j �
2 �s� j �2 � �

PN
i�1

pi�x�i�1 y
�i�
1 � s

� j �
2 x
�i�
2 y
�i�
2 � 6� 0

for j � 1; 2. Then there is a unique rotation

U? � U?�'�1�; s
�1�
1 ; s

�1�
2 �

or a unique roto-inversion

U? � U?�'�2�; s
�2�
1 ; s

�2�
2 �

which maximizes the function

G�U� �PN
i�1

pihYi;UXii:

Furthermore, with a suitable integer k0, the optimal angle

'? 2 �0; 2��, which generates the optimal transformation

U?�'?; s
� j �
1 ; s

� j �
2 �, is given by the two equations

'� j � � arctan�c� j �1 =c
� j �
2 � � k�; k 2 Z; j � 1; 2:

Note that theorem 3 does not provide a necessary optimality

condition; for general point collections, uniqueness of the best

transformation U? cannot be expected. To give an example:

for a triangle F � �X1;X2;X3� spinning around its centroid

Y :� �X1 � X2 � X3�=3 � O;
we have G � 0, and the minimum value of the residual

R�U�'�� � kX1k2 � kX2k2 � kX3k2
ÿ �

=3

does not depend on the angle '. Equivalently, a closer look at

the coef®cients (6) shows that every term in the sums is

multiplied by a zero component of Y, i.e. for all coef®cients we

have c� j �r � 0 (r; j � 1; 2), hence g0 � 0. We point out that this

example is just a simple representative of a special class of

residuals which is investigated in the following section (cf.

example 1; x3.2).

For dimension n � 3, every orthogonal transformation U

can be represented by suitable products of matrices (e.g.

Giacovazzo, 1994):

Ux�'1� �
s1 0 0

0 cos '1 ÿ sin '1

0 sin '1 cos '1

0B@
1CA

Uy�'2� �
cos '2 0 sin '2

0 s2 0

ÿ sin '2 0 cos '2

0B@
1CA �7�

Uz�'3� �
cos'3 ÿ sin '3 0

sin '3 cos '3 0

0 0 s3

0B@
1CA:

The integers si indicate rotation (si � 1) or roto-inversion

(si � ÿ1; i � 1; 2; 3), the subscripts x; y; z refer to the axis of

the rotation. If the Eulerian angles �1; �2; �3 are used, every

orthogonal U is a product,

U � Uz00 ��3�Ux0 ��2�Uz��1�;
where the subscript primes refer to transformed coordinates.

With this representation of U, we could, in principle, evaluate

the inner products of the function G�U��1; �2; �3�� as before

[cf. equation (4)] and derive a function g ��1; �2; �3� which

would have to be maximized. However, here and now, the

suf®ciency condition for optimal angles would involve the

solution of a non-linear trigonometric system of equations

@

@�j

g��1; �2; �3� � 0; j � 1; 2; 3;

which no longer has an explicit solution and must be solved

approximately. Instead, for n � 3, we suggest the use of stable

and robust Monte Carlo methods or evolutionary algorithms

(e.g. BaÈck, 1996) for a direct computation of the optimal

images X?
1 ; : : : ;X?

N for the residual (3) or the function (4).

Since, by virtue of the centroid principle, translation is no

longer part of the optimization, such methods are well suited

for this less complex task. xx4 and 5 are dedicated to the

details.

3. The concept of informed co-sets

Theorem 1 states the centroid principle in a very condensed

form. At the same time, it provides a sound mathematical

framework which we will now use to derive a more detailed

and more ¯exible version of the principle that better meets the

needs of speci®c applications; more detailed in the sense that it

takes into account more complex relations between the point

sets, i.e. their `spatial mesh', and more ¯exible in that it is able

to take up information about these relations that may depend

on the particular application. We would like the principle to

offer an interface to expert knowledge about predominant

pairs of points that govern the `interactions' of the point sets.

In this section, we discuss the necessity for such an extension,

prove the extended version of the principle and demonstrate

its use along some simple examples.

To be able to describe a spatial mesh between the

point sets, an extended version of the centroid principle

must explicitly deal with those cases in which a point Xi

of a set F � fX1; : : : ;XNg is related to more than one

point Yj of a set P � fY1; : : : ;YMg, and vice versa. In

Fig. 2(a), the dumbbell F � fX1;X2g and the black triangle

P � fY1;Y2;Y3g can only be considered `close' to each other

if at least the three distances

R�F� � kY1 ÿ X1k2 � kY3 ÿ X1k2 � kY2 ÿ X2k2

contribute to the residual R, i.e. only if the point X1 enters R

twice. Without the term kY3 ÿ X1k2, for instance, the in¯uence

of Y3 on the approximation is lost, and `close' would mean a

collinear alignment of the two dumbbells F and fY1;Y2g � P.

Therefore, we extend the set F � fX1;X2g to its linearily

ordered informed co-set F � � �X1;X1;X2� and take
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P� � �Y1;Y3;Y2� as an informed co-set of P. The subscript �
indicates the relation

� � �X1;Y1�; �X1;Y3�; �X2;Y2�
� 	

of pre-selected point pairs which we want to contribute to the

extended residual

R��F� � kP� ÿ F �k2 �P3

i�1

kYi ÿ Xik2

(where we have re-indexed the summation). After the

extension, the complete information for a spatial mesh

between F and P is stored in the informed pair �F �;P�� of

linearly ordered co-sets. In essence, this concept serves as an

adequate vehicle to make a pre-selected mesh of the point sets

P and F into a mesh of P and its best approximations F ?.
Note that, in general, the residual R� may have multiple

entries from both F and P at the same time. As will be shown

now, the extended centroid principle holds for any relation

� � F � P of the Cartesian product of the point sets. Of

course, not all possible choices of � will be of equal interest in

a particular application. Then expert knowledge can be used,

interactively or stored in a knowledge base, to de®ne appro-

priate residuals R� that meet the speci®c needs of an appli-

cation. This will become clearer from the examples of this

section.

To treat the general case, let P � fY1; : : : ;YMg denote a

®xed set of (pairwise different) points of <n, and let

Figure 3
Three of the best short-range approximations of an isosceles triangle F ?
to a square P � fY1; : : : ;Y4g (see text). Voronoi's cells help to identify
appropriate approximation residuals. Symmetry facilitates the search for
optimal solutions.

Figure 2
In (a) the dumbbell F � fX1;X2g is in a `good' approximation with
the triangle P � fY1;Y2;Y3g. To capture the best approximation
F ? � fX?

1 ;X?
2 g depicted in (b), the two points of F must mesh with all

points of P.



F � fX1; : : : ;XNg denote a second such set which may be

subjected to translations A 2 <n. For a pre-selected relation

� � F � P, let the pairs �Xi;Yj� 2 � be linearily ordered in

the form

�Xi;Yi1�; : : : ; �Xi;Yini
�; i � 1; : : : ;N�; �8�

where 1 � N� � N. Then, in this order, we take the ®rst

entries to de®ne the informed co-set

F � :� �X1; : : : ;XL�
of F , and the second entries to build the co-set

P� :� �Y1; : : : ;YL�

of P, with

L :�PN�

i�1

ni � NM:

Since the linear order (8) is compatible with translations, i.e.

�A� F�� � �A� X1; : : : ;A� XN�� � A� F �;
the weighted residual

R��A� :�PL
i�1

pikYi ÿ �A� Xi�k2 �9�

is well de®ned for any translation A. In total, the co-sets

F �;P� and their residual R� satisfy the assumptions of

theorem 1 so that the following corollary holds.

3.1. Corollary 1 ± a structured form of the centroid principle

Let P � fY1; : : : ;YMg � <n denote a ®xed set of (pairwise

different) points, and let F � fX1; : : : ;XNg denote a second

such set which is mapped by translations A 2 <n. For a pre-

selected relation � � F � P, let R��A� denote its weighted

residual (9). Then, if A � A? is selected such that R��A?� is

minimal, the informed co-sets P� and �A? � F�� � A? � F �
must have a conjoint weighted centroidPL

i�1

piYi �
PL
i�1

pi�A? � Xi�:

To demonstrate the use of the principle and the bene®t from

the informed co-sets, three rather different aspects of the

principle are discussed along with some examples.

3.2. Example 1 ± Cartesian residual

As a ®rst example, we consider the Cartesian residual RF�P ,

which is de®ned by the Cartesian product of the point sets

Acta Cryst. (2001). A57, 20±33 MaÈdler et al. � A geometric centroid principle 25
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Figure 4
Coulomb equilibrium inside a ®ctitious ionic crystal. In (a), the conjoint
centroids of the fragment F � �Xÿ1 ;Xÿ2 � and the cell P � �Y�1 ; : : : ;Y�4 �
are located on the dark-blue star. In (b), the square is slightly distorted.
The red balls indicate conjoint centroids as computed by a combined
Monte Carlo and evolution strategy.

Figure 5
Electrostatic equilibrium of simultaneous Coulomb attraction and core
repulsion for the ensemble of Fig. 4(a); the conjoint centroids (yellow)
characterize force-free positions of the fragment inside the unit cell. For
comparison, the pure Coulomb equilibrium is shown in the background.
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F � fX1; : : : ;XNg and P � fY1; : : : ;YMg with L � NM and

equal weights pi � 1=L,

RF�P�U� � �1=L�PL
i�1

kYi ÿ UXik2: �10�

For this residual, the centroid principle completely char-

acterizes the (non-unique) best approximations of the sets F
and P, i.e. it provides a necessary and suf®cient optimality

condition.

3.3. Corollary 2 ± sufficiency in case of Cartesian residual

Let the point sets F and P satisfy the assumptions of

corollary 1, and let the Cartesian co-sets FF�P and PF�P have

a common centroid

�1=L�PL
i�1

Yi � �1=L�PL
i�1

Xi: �11�

Then, the residual RF�P does not depend on orthogonal

transformations U, i.e. the residual has a constant minimum

value

RF�P�U� � �1=L�PL
i�1

kYik2 � kXik2
ÿ �

and UF � �UX1; : : : ;UXN� is optimal for arbitrary rotations

or roto-inversions U.

3.4. Proof

Without loss of generality, we may assume that both point

sets F and P have been translated in such a way that the equi-

weighted centroid of F is the origin O of the space <n. Hence,

for any orthogonal transformation U, we have

O � UO � U
PN
i�1

�1=N�Xi

� �
� �1=N�PN

i�1

UXi ; �12�

where N is the number of points in F .

According to theorem 2 (x2.5), it suf®ces to prove the

identity [cf. equation (4)]

G�U� � �1=L�PL
k�i

hYk;UXki � 0:

Since O is orthogonal to any vector, particularly to the

centroid of P, we apply equation (12),

0 � �1=M�PM
j�1

Yj;O
* +

� �1=MN� PM
j�1

Yj;
PN
i�1

UXi

* +

� �1=MN�PM
j�1

PN
i�1

hYj;UXii

� �1=L�PL
k�1

hYk;UXki

� G�U�;
with L :� MN. The minimum value of the residual now

follows from the expansion of

RF�P � �1=L�kPF�P ÿ FF�Pk2

into its inner products [cf. equation (10)].

The corollary shows that, in general, uniqueness of the best

approximations cannot be expected; the whole class of

Cartesian (equi-weighted) residuals admits an in®nite number

of solutions that are optimal if and only if they share their

centroid. For an illustration, the internet location http://

www.hmi.de/people/maedler/ offers the link `centroid prin-

ciple': a fragment F ? inside a point set P rotates through the

minima of the Cartesian residual RF�P . In order to verify the

principle, it was left to the minimizing evolution strategy to

calculate the sequence of the centroid's positions

F k ! F ? � P during the approximation.

Among the relations � � F � P, the Cartesian product

� � F � P provides the most natural generalization of the

centroid's minimum property from which we started in x2. As

a matter of fact, a triangle spinning around its centroid is only

a simple representative of the class of Cartesian residuals,

which consists of point sets spinning around their conjoint

centroid. In order to generalize the well known minimum

property of the triangle, we have substituted the centroid of a

point set by a second point set.

3.5. Example 2 ± equi-weighted short-range solutions

Our second example is the class of short-range approxi-

mations, which may be of particular interest in practical

applications. For this class, the spatial mesh � � F � P
consists of the pairs �Xi;Yj� of shortest distance, i.e.

�Xi;Yj� 2 � iff kXi ÿ Yjk � min
Y2P
kXi ÿ Yk �13�

for every Xi 2 F. Fig. 3 shows different short-range approxi-

mations of a triangle (white) inside a square (black). In

Fig. 3(a), we want the short-range pairs

� � �X1;Y1�; �X2;Y3�; �X3;Y1�
� 	

to contribute to the residual; so we use the informed co-sets

F � :� F and P� :� �Y1;Y3;Y1�, and have to minimize the

residual

R��U� � �1=3�kP� ÿ UFk2:

The coloured background depicts Voronoi's cells for the four

vertices of the square: for every point of the plane, the colour

of the point indicates its distance to the nearest black vertex.

Thus, the plane is partitioned into four ranges, and a pair

�Xi;Yj� contributes to the residual if both Xi and Yj are in the

same Voronoi cell. This may include the case of non-unique

short-range pairs: in the best approximation depicted in

Fig. 3(c), X?
2 lies on the border between two ranges; to achieve

this solution, we have to use the co-sets F � :� �X1;X2;X2;X3�
and P� :� P, and must minimize the value of

R��U� � �1=4�kP ÿ UF �k2: �14�
Note that there is a way to compute at least some of the short-

range solutions without specifying a spatial mesh �. If we use

the (non-differentiable) residual



R�P 0; U� �PN
i�1

min
Yi 2P0�P

min
U
kYi ÿ UXik2 �15�

and if the conjoint centroid is not ®xed beforehand, the

detection of the short-range partners Yi is left to the optimi-

zation, and the algorithm can ®nd best solutions like the ones

shown in Figs. 3(a) and 3(b), but not the solution in Fig. 3(c). If

we specify a conjoint centroid and minimize residual (15), the

centroid principle provides a test on the validity of the

computed result: it is a best approximation if and only if the

detected co-sets have a conjoint centroid in accordance with

corollary 1.

In order to demonstrate the effect of the centroid principle,

we discuss below some simple examples, for which the best

approximations can be predicted almost by eye.

In Fig. 3(a), each vertex of the white triangle enters the

residual once, so the conjoint centroid C must be the usual

centroid of the triangle (which divides the triangle's medians

in the ratio of 1:2). Only the points Y1 and Y3 contribute to the

short-range residual, the point Y1 entering twice, so that the

conjoint centroid C must divide the diagonal Y1Y3 of the

square in the ratio of 1:2.

In Fig. 3(b), only the right-hand upper triangle of the black

square is involved in the approximation, and the two triangles

contribute with unique short-range pairs; according to the

centroid principle the conjoint centroid C for the best

approximation must be the usual centroid of the two triangles.

In Fig. 3(c), each of the vertices of the square contributes to

the residual once, so the conjoint centroid Cmust be the centre

of the square. Since one of the triangle's vertices, namely X2,

enters the residual twice, the conjoint centroid, in this case, is

not the usual centroid of the triangle, but is shifted towards X?
2

and divides the horizontal median in the ratio of 1:1.

In order to verify the centroid principle, the location C of

the conjoint centroid was not speci®ed beforehand but was left

to the optimization. Note how the symmetries of the square

and of the isosceles triangle is mirrored in the optimal

approximations. We may hope to derive a symmetry principle,

in elementary geometric terms and as profound as the centroid

principle, which could provide further characteristics of

optimal solutions.

3.6. Example 3 ± modelling of forces

It is an interesting task to invert the centroid principle and

look for classes of weights that admit approximations of point

sets F and P such that F and P exhibit a conjoint centroid.

Such an inversion of the principle can be used, for instance, to

model the force-free equilibrium orientations of a fragment F
inside the unit cell P of an ionic crystal; at least in the sense of

a ®rst approximation that takes into account next-neighbour

ions only.

For the sake of graphicness, we restrict ourselves to a simple

®ctitious ensemble consisting of a negative ion F � fXÿ1 ;Xÿ2 g
inside a plane ionic counterpart P � fY�1 ; : : : ;Y�4 g, which is

kept ®xed. Since we just want to demonstrate the underlying

geometric principle, we neither consider in®nity of the crystal

nor any relaxations of the point charges, which are assumed to

have magnitude e � 1. Also, charge balance is not requested,

and force constants are used that ®t with the size and

dimension of the sets of ions in order to produce the equilibria

we would like to visualize.

At ®rst, only Coulomb interactions between all pairs

�Xi;Yj� are taken into account (cf. Fig. 4). This means that the

forcesKij between ions Xi and Yj of opposite charge are of the

form

Kij�Xi� � p0ij�Xi ÿ Yj�; i � 1; 2; j � 1; : : : ; 4;

with coef®cients

p0ij�Xi� :� kXi ÿ Yjkÿ3:

After normalization, the interactions read

Kij�Xi� � kXi ÿ Yjkÿ2�Xi ÿ Yj�=kXi ÿ Yjk;
which is Coulomb's law for our simpli®ed situation.

In order to apply the centroid principle, we use the Car-

tesian co-sets of F and P for � � F � P [cf. equation (8)],

F � :� �X1;X1;X1;X1;X2;X2;X2;X2�
and

P� :� �Y1;Y2;Y3;Y4;Y1;Y2;Y3;Y4�:
Then, after re-indexing, the resultant force can be written in

the form

K�F� �P8

i�1

p0i�Xi ÿ Yi�:

For

s � s �F � :�P8

i�1

p0i

and pi � pi�F� :� p0i=s, we have pi > 0,
P

pi � 1, and the

following equation holds:

K�F� � s
P

pi�Xi ÿ Yi� � s�CF � ÿ CP��; �16�
i.e. for fragment positions F with ®nite sums s the ions are in

equilibrium position if and only if the weights pi � p0i=s result

in a conjoint centroid

CF� �
P

piXi �
P

piYi � CP� :

In this sense, a conjoint centroid characterizes the Coulomb

equilibria among the fragment orientations inside the unit cell

of the crystal. Note that we have to take the centroids of the

co-sets F � and P� in order to achieve this result.

In Fig. 4(a), the star-shaped dark-blue line and the centre

indicate the conjoint centroids CF� � CP� of the negatively

charged dumbbell F � fX1;X2g of length 1 and the positively

charged square P � fY1; : : : ;Y4g of edge length 2. To

compute the ®gure, for every point P of a 100� 100 grid, we

used an evolution strategy (see x4) in order to minimize the

deviation of the centroids from P over the space of isometric

mappings F � A� U�F 0�, where F 0 is an initial position of

the fragment,
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d�F ?;P� � min
F
kCF� ÿ Pk � kCP� ÿ Pk
� �

:

We can express the resultant via the difference of the centroids

and estimate the force on the optimal fragment

kK�F ?�k � s�F ?�kCF ?� ÿ CP�k
� s�F ?� kCF ?� ÿ Pk � kCP� ÿ Pk

� �
:

Hence, a conjoint centroid P � CF � � CP� indicates a resul-

tant K�F ?� � O, and the iso-lines d?�P� � 0 (or the iso-

surfaces in the spatial case) of the function

d?�P� :� s�F ?�d�F ?;P�
represent the equilibrium states of F in P, one of which is

depicted in Fig. 4(a). Values d?�P�> 0 still give a qualitative

impression of the force, at least in the sense that they provide

an upper bound for the force on the fragment `near' the

points P.

Additionally, a combined Monte Carlo and evolution

method was used for Fig. 4(b) in order to compute the conjoint

centroids: at each Monte Carlo step, the fragment F 0 is

randomly `thrown' into the cell; then a local minimization

®nds positions with identical centroids, thus covering the iso-

lines d?�P� � 0 more or less completely. In order to demon-

strate the sensitive dependence of the conjoint centroid on a

symmetric con®guration, the quadrangle is slightly distorted

along the diagonals [compared with the square in Fig. 4(a) by

about 2 and 5% in the left-hand and right-hand upper vertices,

respectively].

In essence, the same method can be applied when repulsion

of the atom cores is added. To achieve the simultaneous effects

of Coulomb attraction and core repulsion as depicted in Fig. 5,

these forces are modelled (for this ®ctitious example) by

means of the coef®cients

p0i�Xi� :� kXi ÿ Yikÿ3�1ÿ BkXi ÿ Yikÿ5�:

For comparison, the proportionality constant is B � 0:15 for

the conjoint centroids and B � 0 for the Coulomb back-

ground. In order to meet the assumptions of the centroid

principle, only fragment positions F � with positive coef®cients

p0i�Xi�> 0 are admitted for minimization.

This simple example illustrates the basic idea of how to

invert the centroid principle in order to model forces: if the

weights can be used to express the force laws, the resultant is

the difference vector of the weighted centroids of the inter-

acting partners [up to a scalar function s�F�, cf. equation (16)],

and every conjoint centroid will characterize an equilibrium

state. A forthcoming publication will present more details,

together with a crystallographic application that demands a

more realistic treatment of the forces involved.

For the crystallographic problems in x5, we return to

`forward applications' of the principle, in order to achieve

results that are more qualitative in the sense that they are

based on geometric concepts only. Before we go into more

detail, some computational aspects are discussed; we feel that

Figure 6
A qualitative comparison of the basic versions of Monte Carlo methods
(MC), evolution strategies (ES) and self-adapting evolution strategies
(SAES). The lines depict the averaged ratio of accuracy (number of valid
decimals in the solution) over effort (number of trials or generations on a
logarithmic scale).

Figure 7
Equi-electron density surfaces of cubic KPF6 at ambient conditions (a)
and at a pressure of 0.15 GPa (b).



we should not release the centroid principle without

suggesting a ¯exible computation method that is able to

exploit the expressive modelling power of the principle, thus

making it available for practical applications.

4. Computational aspects

Monte Carlo methods (MC) and evolution strategies (ES) in

particular exhibit several advantageous properties that can

compensate for their possibly low convergence rates and make

these methods a useful computation tool. They are not

sensitive to phenomena like ill-conditionedness of the optimal

transformations, and they cope with non-unique solutions: at

least statistically they tend towards completeness of the

solution set; this is an inevitable requirement, for instance, if

structural fragments are to be computed in full disorder, in

order to explain a spatial or a space-and-time average of a

physical entity observed in experiments (see also x5). Last, but

not least, self-adapting evolution strategies (SAES) (i.e. BaÈck,

1998) are able to provide high accuracy in their results. This

can be essential for crystallographic applications (like, for

instance, for the case of KPF6 in x5): if symmetry is involved,

and if the calculations are performed on normalized scales, the

solutions may show exact fractions, which a computer program

should indicate through high accuracy.

In this section, we compare the basic algorithms of MC, ES

and SAES with respect to the relation of accuracy and effort.

For each method, the short-range residual [cf. equation (15) of

example 2 in the preceding section]

R�P 0; U� � min
Yi 2P0�P

min
U

P6

i�1

kYi ÿ UXik2

is used to compute the minimum rotation U? of a regular

octahedron F � fX1; : : : ;X6g in a ®xed cube P �
fY1; : : : ;Y8g. The determination of the optimal subset P 0 � P
of cube vertices Yi 2 P 0 is part of the problem, which becomes

non-differentiable this way. The conjoint centroid is the origin

O; the edge of the cube has the length 2 and is equal to the

total height of the octahedron. ES and SAES computations

start from an octahedron whose axes coincide with the coor-

dinate system. We use this example for the sake of graphicness

only; according to our experiences in rather different appli-

cations, Fig. 6 gives a reliable qualitative comparison of the

three methods and of their ratios of accuracy versus effort.

Here, effort is measured by the number of trials in MC and by

the number of generations in ES and SAES, while accuracy is

the number of valid decimal places in the solutions X?
i , which,

in this example, are signed permutations of the point �x; x; z�
with x � 2=3 and z � 1=3.

4.1. Monte Carlo method (MC)

In its purest version, MC successively generates objects at

random (e.g. orthogonal matrices U) and keeps the best with

respect to an objective function [e.g. the function G�U�, see

equation (4)]. The method is `blind' in the sense that it neither

Acta Cryst. (2001). A57, 20±33 MaÈdler et al. � A geometric centroid principle 29

research papers

Figure 8
High-pressure con®gurations of cubic KPF6 at 0.15 GPa.

Figure 9
Pressure-dependence of disorder in KPF6 as predicted in a qualitative
model. (a) At ambient pressure, a static disorder of six stable PF6

orientations could co-exist with a dynamic disorder of superposed PF6

trajectories close to the black `evolution tracks'. (b) At a pressure of
0.15 GPa, the disorder is reduced to four stable high-pressure orienta-
tions.
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exploits any knowledge about the search space nor uses any

heuristic information. Nevertheless, if the problem is of

`moderate magnitude' [like the search space of the orthogonal

transformations U � U��1; �2; �3� which are generated by

three independent rotation angles], the method will ®nd ®rst

approximations of optimal objects in acceptable time. In

general, high accuracy of the solutions cannot be expected

from MC; note that the effort axis in Fig. 6 is logarithmic. On

average, more than one to two valid decimal places were not

found for our example; in particular, the results did not indi-

cate the fractions.

4.2. Evolution strategy (ES)

Evolutionary algorithms imitate mechanisms of the biolo-

gical evolution in order to optimize an ancestor object (e.g. the

starting position of the above octahedron) along a sequence of

improved offspring. In its most simple form, for every

generation ES generates a child by random mutations of the

parent's parameters (e.g. a new position for the parent octa-

hedron) and compares the ®tness values of the two; the ®tter

one [the position with the higher G value in equation (4)]

becomes the parent for the next generation. The random

mutation is taken, for instance, from a normal distribution; the

width of the distributions is `tuned' to the problem at the

outset and is then kept constant during the evolution.

ES uses heuristic knowledge of the kind `if an increase in

the ®tness is shown for a set of parameters, there may be

higher increase near those parameters'. Of course, this is `just

heuristics' and may fail at particular evolution steps, but for

many problems this knowledge enables ES to produce better

convergence rates than MC. As a consequence, about three

valid decimal places can be expected at an averaged effort of a

million generations, which, in our example, already suggests

the possibility of fractions in the solution.

4.3. Self-adapting evolution strategy (SAES)

The smaller the width of the random distribution, the

smaller the preferred random mutations. Obviously, this

observation provides a simple control of evolutionary success:

SAES observes its success rate and uses additional heuristic

knowledge of the kind `if success turns rare, the mutations may

be too large'. Lowering the width of the distribution (i.e.

preferring smaller angles �1; �2; �3 for the rotations of the

parent octahedra) is a simple but powerful mechanism of self-

adaptation in evolutionary programs. In Knorr & MaÈdler

(1999), we used appropriate variants of an elementary

evolution scheme in order to treat various aspects of crystal

disorder. In all these applications, SAES provided accurate

solutions at reasonable effort. For the example at hand, the

SAES line in Fig. 6 shows that the fractions are computed to

up to six decimal places at an average of less than 1000

generations.

5. Applications of the centroid principle

Although the centroid principle had not been proved at that

time, all applications in Knorr & MaÈdler (1999) did bene®t

from the principle in one way or the other. Many of the

optimizations were performed with free centroids, so that the

conjoint centroid proved to be a plausible and qualitatively

justi®ed assumption, which was observed `in action' and which

helped to understand various aspects of disorder in different

compounds, such as tetrahydrofuran in the �51264�-cage of

ZMS-39, 1,3-dioxolanesilicasodalite and cubic KPF6. Now that

the principle has been proved and is better understood,

qualitative explanations of the observed disorders can be

given; up to a certain degree, we are able to predict some of

the phenomena on the basis of a qualitative model.

In this section, we will demonstrate how the centroid

principle was successfully used to answer questions concerning

the pressure-dependent static or dynamic disorder of KPF6.

Our answers include (i) the computation of its disordered set

of high-pressure conformations from diffraction data, (ii) the

prediction of these conformations through a qualitative

model, (iii) the reproduction of these conformations as solu-

tions to a virtual high-pressure experiment performed in a

qualitative model, and (iv) the computation of a disordered set

of possible reorientation paths, which qualitatively explains

the shape of the electron-density distribution reconstructed

from a diffraction experiment at ambient pressure.

The main reason for calling our model qualitative is the fact

that it is based on geometry only and has not incorporated any

higher quantitative concepts from physics. For instance, the

virtual high-pressure experiment (iii) is performed without

any quantitative notion of force, pressure etc. Nevertheless, it

results exactly in the disordered solutions as computed from

the diffraction data of the real experiment (i); this shows that

qualitative can be exact. Of course, it can also mean

approximate, as, for instance, in the case of the suggested

dynamic disorder of KPF6 at ambient pressure (iv).

Recently, Sowa, Knorr et al. (1999) studied the spatial

electron-density distribution in cubic KPF6 as a function of

pressure. These electron densities were reconstructed from

X-ray single-crystal diffraction data by means of a maximum-

entropy method. Fig. 7 depicts two of the equi-density surfaces

at ambient conditions (Fig. 7a) and at high pressure (Fig. 7b).

(i) At 0.15 GPa, the electron density exhibits a set of eight

maxima P � fM1; : : : ;M8g in the form of a regular cube which

is concentric with the surface in Fig. 7(b) and whose vertices

Mj lie inside the eight triangular cushion-like parts of the

surface. Of course, the density maxima must be caused by a

disorder of PFÿ6 octahedra F � fF1; : : : ;F6g with unknown

orientations inside the equi-density surface. So the question is,

how do the PFÿ6 anions, with their six ions Fÿi , superpose in a

spatial average in order to produce the eight vertices Mj of the

cube P ?

If we assume that the disordered F ions are as close as

possible to the density maxima to which they contribute with

their electrons, we have identi®ed a geometric approximation

problem: compute orientations for the octahedron F whose



vertices Fi are as close as possible to suitable subsets of the

cube vertices Mj .

The sphere in the centre of the equi-surface in Fig. 7(b)

belongs to the P atom and seems to indicate a concentric

position of the cube and the disordered octahedra. Thus, as a

®rst try, we assume a conjoint centroid for the cube P and the

octahedra F and minimize the short-range residual from

equations (13) or (15),

R�P 0; U� �P6

i�1

min
Mi 2P0 �P

min
U
kMi ÿ UFik2:

After a few restarts, the SAES algorithm ®nds four different

octahedra F k. All computations are performed on normalized

scales with the PF bondlength l � 1. We need three non-

collinear points to describe the solutions: the conjoint centroid

of F k and P is at the origin O. Two further points for F 1, for

instance, are

X1;1 � �x; x; z�
X1;2 � �x;ÿz;ÿx� �17�

with x � 2=3 and z � 1=3. All other vertices in the disorder

F 1; : : : ;F 4 are signed permutations of X1;1 (like X1;2). The

computations include the check for compatible ionic radii as

well as the test that the centroid principle holds for every pair

�F k;P 0�. The optimal orientations F k are depicted in Fig. 8 in

different colours. Every octahedron approximates a different

subset P 0 � P of six of the density maxima Mj. The vertices of

the solutions F k lie on edges of the blue cube, which is

concentric and parallel to P. Always, three F anions of

different PFÿ6 octahedra are close to one density maximum Mj

amongst them; in fact, Mj is the centroid of its three anions in

good agreement with the coordinates of Mj as derived from

the experiment data. This is a possible explanation of the

cushion-like forms that make up the shape of the density in

Fig. 7(b).

(ii) In this way, we have determined the disorder from the

maxima of the electron density that was reconstructed from

experiment data. There is, however, another method to derive

this disorder; it is predictive in the sense that it does not refer

to experiments but is based on a qualitative model. Our

assumption now is that the disordered PFÿ6 fragments are

stretched in a frame of its six nearest K� ions. Note that, in

Fig. 8, all F anions of the four octahedra are on the edges of

the blue cube. From the coordinates of the density maxima, we

know that the K cations are located on the centred normals of

the six faces of this cube; i.e. in the solutions F k every F anion

is in best approximation with two different K cations (not

shown in Fig. 8). Table 1 represents geometric expert knowl-

edge for a suitable spatial mesh � of an octahedron inside an

octahedral environment. If we arrange the pairs �Fi;Kj� in the

linear order (8) of x3 and select the informed co-sets

F � :� �F1;F1;F2;F2; : : : ; F6;F6�
for the set of F anions F � fF1; : : : ;F6g and

P� :� �K1;K4;K2;K3;K3;K5;K4;K6;K5;K2;K6;K1�

for the set P � fK1;K2; : : : ;K6g of K cations, we have iden-

ti®ed the ®rst of four equi-weighted residuals,

R�1
�U� � kP�1

ÿ UF �1
k2 �P12

i�1

kKi ÿ UFik2;

which we can minimize, starting with random orientations for

F . For symmetry reasons (cf. Fig. 8), there exist three further

residuals R�2
;R�3

;R�4
of the same kind. Remarkably enough,

the minimization of the four residuals perfectly reproduces the

disorder F 1; : : : ;F 4 which was derived by numerical evalua-

tion of the diffraction data in (i).

Note that this alternative derivation of the disorder reveals

certain predictive capabilities of our qualitative model: some

geometric analysis of the PFÿ6 octahedron F inside its octa-

hedral K� environment P yields hypothetical approximation

residuals R� whose minima might be stable orientations of the

fragment. At this point, the model uses crystallographic

expertise in order to decide, for instance, whether the ionic

radii are compatible for a predicted orientation of F in P.

This, for example, is not the case for the fully ordered KPF6

solution to the residual R��U� � kP ÿ UFk2, where the two

octahedra have a conjoint centroid and coincident axes. On

the other hand, the model predicts a compatible static disorder

for KPF6 at ambient conditions which could co-exist with a

dynamic disorder of the fragment [see (iv) below].

Is there a way to relate this KPF6 disorder qualitatively to

high pressure in a plausible sense?

(iii) Our assumption here is that we do not need to know

force or pressure quantitatively in order to predict a frag-

ment's behaviour inside a crystal which is being squeezed

under the condition that symmetry is not broken. Up to a

certain degree it may suf®ce to model this process and its

result by the fragment's spatial answer to pressure, which is to

sidestep or to give way in its narrowing environment. In this

way, we ran a virtual high-pressure experiment: an SAES

algorithm maximizes the fragment's distances from a

surrounding cube which is concentric with the blue cube in

Fig. 8 (but larger) and which qualitatively represents the cubic

crystal (Knorr & MaÈdler, 1999). Amazingly enough, this

computer simulation, although based on a rather coarse model

of pressure, exactly reproduces the above high-pressure

con®gurations F 1; : : : ;F 4. Therefore, with respect to the

space available for the PF6 anion, the structure of KPF6,
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Table 1
Speci®cation of a spatial mesh � for the PF6 fragment F and the set P of
its K+ neighbours.

In the minimization residual R� every F anion is supposed to interact with two
K cations.

Anion Partner cations

F1 K1, K4

F2 K2, K3

F3 K3, K5

F4 K4, K6

F5 K5, K2

F6 K6, K1
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experimentally observed at 0.15 GPa, is already the most

compressible formation in space group Fm3m. Indeed, Sowa,

Ahsbahs & Kutoglu (1999) show that a further increase of the

pressure triggers a phase transition into a rhombohedrally

distorted CsCl-like structure. So virtual experiments of this

kind may be helpful to predict phase transitions in disordered

structures, at least qualitatively.

Note that the disorder F 1; : : : ;F 4 [cf. equation (17)] equals

the solutions to the approximation problem that we used as a

benchmark in x4. In fact, if we compute the disorder on

normalized scales with the vertices of the octahedron at

distance 1 from its centre, our model predicts that the solu-

tions are independent of the size of the host octahedron, and

that, if the ionic radii are compatible, the most compressible

but still stable orientations of the fragment F in space group

Fm3m will conjointly produce eight maxima Mj of the elec-

tron-density distribution in the form of the vertices of a cube,

which are located at M1 � �5=9; 5=9; 5=9� and its seven

symmetric equivalents. Up to the resolution limits of the KPF6

high-pressure experiment, this prediction is in accordance with

the density maxima as numerically evaluated from the

reconstructed electron density. This may be seen as a mutual

con®rmation of the real experiment and its model-based

qualitative simulation. Of course, the model cannot tell the

maximum value of the density, only its locations.

(iv) Under ambient conditions, the reconstructed electron-

density distribution exhibits 12 maxima that are located at the

midpoints of the 12 edges of the cube-like equi-density surface

in Fig. 7(a). Because of symmetry, we can build six different

residuals

R�k
�U� � kP�k

ÿ UF �k
k2; k � 1; : : : ; 6;

with informed co-sets F �k
and P�k

, for instance,

F �1
:� �F1;F1;F2;F2;F3; F4;F5;F6�

and

P�1
:� �K1;K6;K2;K5;K3;K4;K3;K4�:

The minimization of these residuals reveals the possibility of

stable orientations of PFÿ6 inside its K� host, with two opposite

vertices at the midpoints of opposite edges of a suitable cube

and the other four vertices pairwise on the diagonals of

opposite faces of the cube. These solutions cannot be derived

numerically from the experiment data, which do not show any

density maxima somewhat near to the four Fÿ ions on the

diagonals. So the prediction of the stable disorder F 1; : : : ;F 6

can hardly be the full explanation of the shape of the electron

density, but it contributes to the discussion of the conspicuous

middle parts of the edges in Fig. 7(a).

According to the structured version of the centroid

principle (see corollary 1; x3.1), the conjoint centroid of the

co-sets F �k
and P�k

, k � 1; : : : ; 6, is the centre of the P

atom, which, in this case, is also the conjoint centroid of the

six stable orientations F k and the octahedral K� host. In

Knorr & MaÈdler (1999), we qualitatively investigated the

spatial aspects of a possibly dynamic disorder in a purely

geometric way: the conjoint centroid is ®xed to the centre of

an interaction polyhedron, which for this cubic crystal is a

cube whose faces are tangent to the six nearest K� neigh-

bours at an ionic radius of 1.38 AÊ . The in¯uence of the

electric ®eld is modelled by restraining the fragment's

mobility to rotations around the conjoint centroid that stay

inside the cube. Then automorphic images F0k of the stable

orientations F k (in particular C3 rotations around an axis

through the midsts of opposite faces of the fragment and C4

rotations around its longitudinal axes) are used as goals for

an evolution strategy that minimizes the overall distance of

the ®rst ancestor F k from its image F0k. In this way, the PF6

octahedron is driven through the space remaining inside the

crystal, and the tracks of its F vertices indicate the space for

reorientation pathways for the fragment. As a result, the

tracks superpose to the closed black trajectory in Fig. 9(a),

which passes through all of the stable orientations F 1; : : : ;F 6

and which perfectly ®ts and explains the shape of the electron-

density distribution of Fig. 7(a). In this sense, our qualitative

model suggests the coexistence of stable orientations and

dynamic behaviour of the fragment in order to explain the

disorder observed under ambient conditions, while, at a

pressure of 0.15 GPa, this disorder is reduced to the four

stable high-pressure formations shown in Fig. 9(b), only one of

which (the blue one) is depicted with a realistic ratio of

magnitude in its ionic radius.

6. Summary and conclusions

We have proved a useful geometric centroid principle for rigid

point sets: in order that two such sets achieve a best approxi-

mation, they must conjoin their centroids. To derive a more

elaborate version of the principle that better meets the

demands of practical applications, we introduced informed

co-sets and co-set residuals; these concepts can be used to

specify desirable spatial meshings among the point sets

approximating each other.

The principle of the conjoint centroid is of fourfold

importance: (i) it describes a fundamental geometric property

of the Euclidean space; (ii) it provides a ¯exible concept of

approximation for rigid point sets and a necessary condition

for their optimal approximation; (iii) its inversion can be used

to model forces; and (iv) it is a fundamental building block for

qualitative models of physical problems which are, in essence,

of geometric nature and which can be reduced to geometric

approximation problems. The embedding of a disordered

structural fragment into the maxima or other conspicuous

point sets of its electron-density distribution is but one

example; other crystallographic applications are the (exact)

prediction of pressure-dependent static disorders and the

(approximate) computation of possible reorientation path-

ways by means of an evolution strategy. This is our suggestion

of a qualitative model for disorder in crystals: represent the

disorder implicitly in the form of minima of suitably selected

co-set residuals and solve these approximation tasks by self-

adapting evolution strategies using chemical expertise to

reject solutions with incompatible potentials; up to a certain



degree, such a computer-based model can compensate for the

lack of explicit formulae.

References

BaÈck, T. (1996). Evolutionary Algorithms in Theory and Practice.
Oxford University Press.

BaÈck, T. (1998). Fundam. Inf. 35, 51±66.
Giacovazzo, C. (1994). Fundamentals of Crystallography, edited by C.

Giacovazzo, pp. 61±140. Oxford University Press.

Knorr, K. & MaÈdler, F. (1999). J. Appl. Cryst. 32, 902±910.
Knorr, K., MaÈdler, F. & Papoular, R. J. (1998). Microporous

Mesoporous Mater. 21, 353±363.
Sowa, H., Ahsbahs, H. & Kutoglu, G. (1999). Z. Kristallogr. 214,

751±757.
Sowa, H., Knorr, K., MaÈdler, F., Ahsbahs, H. & Kutoglu, G. (1999). Z.

Kristallogr. 214, 542±546.
Valenza, R. (1993). Linear Algebra ± An Introduction to Abstract

Mathematics. Berlin: Springer-Verlag.
Weisstein, E. W. (1999). CRC Concise Encyclopedia of Mathematics.

Boca Raton, Florida: CRC Press.

Acta Cryst. (2001). A57, 20±33 MaÈdler et al. � A geometric centroid principle 33

research papers


